

FROM DATA TO DECISION: HOW AI AND FINTECH DRIVE DIGITAL TRANSFORMATION IN RURAL ENTREPRENEURSHIP

Dhiptya Ratri Anggraheni, Udkhiati Mawaddah
Universitas Islam Balitar (Unisba) Blitar

Address: Jl. Majapahit No.2- 4, Sananwetan, Blitar, Jawa Timur 66137

dhiptyaratri25@gmail.com

ABSTRACT

This study presents a systematic literature review (SLR) examining how Artificial Intelligence (AI) and Financial Technology (FinTech) drive digital transformation in rural entrepreneurship. Based on 20 peer-reviewed studies published between 2020 and 2025, the analysis integrates insights from developed and developing economies using the Resource-Based View (RBV), Diffusion of Innovation (DOI) Theory, Institutional Theory, and Sustainable Livelihoods Framework (SLF). Findings reveal that digital infrastructure serves as the foundation for rural participation in the digital economy, while FinTech promotes financial inclusion through mobile banking, blockchain, and data-driven credit systems. AI enhances decision-making via predictive analytics and automation, improving efficiency across production, logistics, and marketing. Governance quality and human capital development shape institutional readiness and ensure sustainability alignment. This review advances theoretical understanding and offers policy guidance for building inclusive digital ecosystems through adaptive governance, capacity-building, and ethical technology integration, fostering resilient and equitable rural transformation.

Keywords: Artificial Intelligence, FinTech, Digital Transformation, Rural Entrepreneurship, Financial Inclusion.

A. INTRODUCTION

The intersection of Artificial Intelligence (AI), Financial Technology (FinTech), and rural entrepreneurship represents one of the most transformative frontiers in global economic development in the twenty-first century. As the digital economy expands, the integration of AI and FinTech into rural contexts has begun reshaping entrepreneurial ecosystems, redefining access to finance, and promoting inclusive growth. This convergence holds immense potential to narrow the urban-rural divide and enhance the resilience of local enterprises. Digital technologies now enable small and medium-sized rural enterprises to overcome traditional barriers such as inadequate infrastructure, limited financial access, and information asymmetry while creating new pathways for innovation and sustainable participation in the global economy (Shamim & Ahmad, 2025; Fahmi & Savira, 2021).

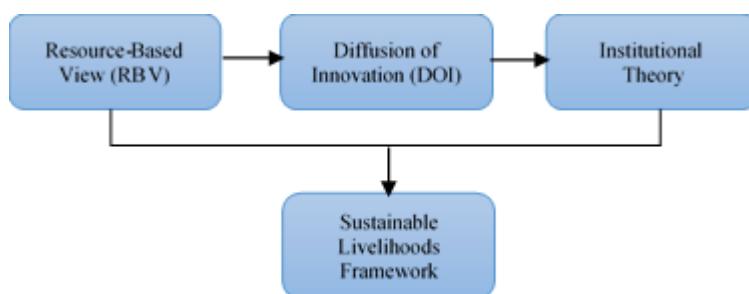
Over the past decade, AI and FinTech innovations have fundamentally transformed the structure and dynamics of rural entrepreneurship. The introduction of digital financial systems, such as India's Unified Payments Interface (UPI), has democratized access to financial services by reducing transaction costs and simplifying digital payments for rural firms (Ji et al., 2021). Similarly, Kenya's M-Pesa platform revolutionized rural financial inclusion by enabling unbanked populations to transact securely and access credit, strengthening local economies (Tiony, 2024). Beyond facilitating financial inclusion, these technologies have built a foundation for data-driven decision-making, improving efficiency, resource allocation, and risk management. The COVID-19 pandemic further accelerated digital adoption, underscoring the importance of AI and FinTech in maintaining business continuity and resilience (Criveanu, 2023).

AI and FinTech jointly act as catalysts for inclusive and sustainable development. AI-powered analytics, machine learning, and automation empower rural entrepreneurs to make data-informed decisions, forecast market fluctuations, and adapt to supply chain disruptions. FinTech, in parallel, expands access to financial capital, enables microcredit, and enhances transaction transparency all vital for nurturing entrepreneurship in underdeveloped areas (Chen et al., 2022; Cheng & Zheng, 2023). Together, these technologies mark a shift from intuition-based decisions toward data-driven strategic thinking, reinforcing competitiveness and scalability. This transformation aligns with global development goals that recognize the digital economy as a cornerstone of equitable growth.

Nevertheless, the journey toward comprehensive digital transformation in rural economies faces persistent challenges. Deficient infrastructure, low internet connectivity, and limited human capital continue to restrict the adoption of AI and FinTech. High technological costs, weak digital literacy, and regulatory uncertainty further exacerbate these barriers (Alabdali et al., 2023; Fanelli, 2021). Moreover, cybersecurity threats, data privacy concerns, and weak governance structures heighten ecosystem vulnerabilities (Mwogosi, 2025; Monda et al., 2023). Without robust institutional support, uneven technological diffusion risks amplifying socio-economic disparities instead of bridging them.

Despite these obstacles, scholars increasingly emphasize that the successful integration of AI and FinTech depends on the interplay of technological readiness, social dynamics, and institutional frameworks. Studies highlight that digital transformation in rural economies requires not only infrastructure but also cultural adaptability and policy alignment (Tabares et al., 2022; Wu & Peng, 2024). The Sustainable Livelihoods Framework (SLF) stresses the importance of social and financial capital in enabling entrepreneurship, while the Technology Acceptance Model (TAM) identifies perceived usefulness and ease of use as key determinants of adoption. Together, these frameworks underscore the need for an ecosystemic approach to rural digital transformation one that unites technological, social, and institutional dimensions.

Emerging research further reveals that data has become a critical asset for innovation and competitiveness. AI technologies empower rural entrepreneurs to derive insights from large datasets, optimize production, and anticipate consumer behavior (Okoye et al., 2024; Junping et al., 2023). FinTech complements this process by offering liquidity, facilitating investments, and encouraging risk-taking. The synergy between AI and FinTech thus creates a feedback loop in which data-driven insights strengthen financial decision-making, while improved financial access accelerates technological adoption. Yet, the uneven distribution of these benefits remains a concern. Persistent digital divides marginalize rural populations, emphasizing the need for equitable infrastructure, capacity-building, and ethical governance (Morris et al., 2022; Zhang et al., 2022).


Accordingly, this review synthesizes current research on how AI and FinTech collectively drive digital transformation in rural entrepreneurship. It examines the mechanisms through which these technologies enable financial inclusion, data-driven decisions, and sustainable enterprise growth. The review focuses on studies published between 2020 and 2025 capturing the rapid acceleration of digitalization following the COVID-19 pandemic and centers on developing economies in Asia, Africa, and Latin America, where digital transformation remains both urgent and uneven. Two guiding questions frame the analysis: (1) How do AI and FinTech drive digital transformation in rural entrepreneurship? and (2) What mechanisms connect data utilization and decision-making in rural enterprises? Together, these questions seek to illuminate how data serves as a strategic asset for entrepreneurship and inclusive rural development.

B. LITERATURE REVIEW

Resource-Based View (RBV)

The Resource-Based View (RBV) has been widely applied to explain the development of technological capabilities within small and rural enterprises. RBV posits that a firm's competitive advantage arises from its ability to acquire, integrate, and deploy valuable, rare, inimitable, and non-substitutable (VRIN) resources (Joensuu-Salo & Matalamäki, 2023). In the context of digital transformation, digital capabilities such as AI proficiency, data analytics competence, and FinTech integration are conceptualized as strategic resources that enable firms to sustain competitiveness in dynamic environments (Kumar et al., 2025). Studies have shown that enterprises possessing strong digital competencies can improve operational efficiency, foster innovation, and achieve superior performance (Singh et al., 2024; Kumar et al., 2025).

In rural contexts, where financial and infrastructural limitations are prevalent, the RBV highlights how technology adoption becomes a form of strategic resource mobilization (Zahra, 2021). The ability to harness digital resources such as AI-driven data systems or FinTech-based financial access enables rural entrepreneurs to overcome environmental constraints and achieve resilience. This perspective underscores the importance of capability development and resource orchestration as key determinants of long-term entrepreneurial success.

Figure 1. Theoretical Integration Model

Diffusion of Innovation (DOI) Theory

The Diffusion of Innovation Theory (Green et al, 2011) offers a robust framework for analyzing how innovations such as AI tools or FinTech applications are communicated and adopted within social systems. DOI posits that adoption depends on innovation attributes including relative advantage, compatibility, complexity, trialability, and observability (Willie, 2024). In rural entrepreneurship, these dimensions are critical for understanding how new digital technologies spread among small enterprises, farmers, and community-based organizations.

Scholars note that in rural contexts, innovation diffusion is not solely a technological process but also a social one, shaped by local norms, trust networks, and the perceived utility of technology (Hsiao, 2024; Verma, 2024). The adoption of AI and FinTech is often influenced by perceived benefits such as ease of transaction, access to credit, and risk mitigation as well as socio cultural factors that determine the speed and extent of technology uptake. For example, rural entrepreneurs' willingness to use mobile banking platforms or AI-driven decision tools depends not only on the technology's performance but also on its perceived compatibility with existing practices and values.

Institutional Theory

Institutional Theory complements the DOI perspective by examining how institutional pressures coercive, normative, and mimetic influence the adoption of technology (Tamin & Adis, 2020). In the realm of rural entrepreneurship, regulatory

frameworks, cultural norms, and market institutions shape how AI and FinTech are perceived, legitimized, and implemented. Institutional Theory thus provides a lens for understanding how governance mechanisms and policy interventions can either enable or constrain digital transformation.

According to Hsiao (2024), institutional contexts in developing economies often lack the formal structures necessary to support innovation diffusion. Informal networks and local cooperatives may therefore act as substitutes for formal institutions, influencing technology adoption through social learning and imitation. Similarly, Verma (2024) highlights that institutional legitimacy is critical for building trust in FinTech solutions, particularly in rural areas where financial systems are traditionally informal and relationship based. The combination of DOI and Institutional Theory thus enables a multi-level analysis that accounts for both individual adoption behavior and broader systemic forces.

Sustainable Livelihoods Framework

The Sustainable Livelihoods Framework (SLF) provides a socio-economic foundation for understanding how digital technologies contribute to rural empowerment and poverty reduction. It emphasizes five forms of capital human, social, natural, physical, and financial that collectively sustain livelihoods (Tabares et al., 2022). Within this framework, access to digital tools such as AI-driven analytics or FinTech-based financial services enhances both human and financial capital, enabling rural populations to pursue diverse and sustainable income-generating activities.

Moreover, SLF underscores the importance of resilience in the face of external shocks, such as market volatility or climate change. AI technologies can provide predictive insights into weather patterns, crop yields, or market prices, while FinTech offers financial instruments for managing risk and smoothing consumption (Wu & Peng, 2024). Thus, digital transformation not only enhances productivity but also contributes to long-term livelihood security and social inclusion. Integrating SLF with RBV and DOI highlights how technological and institutional factors intersect to shape the resilience and sustainability of rural enterprises.

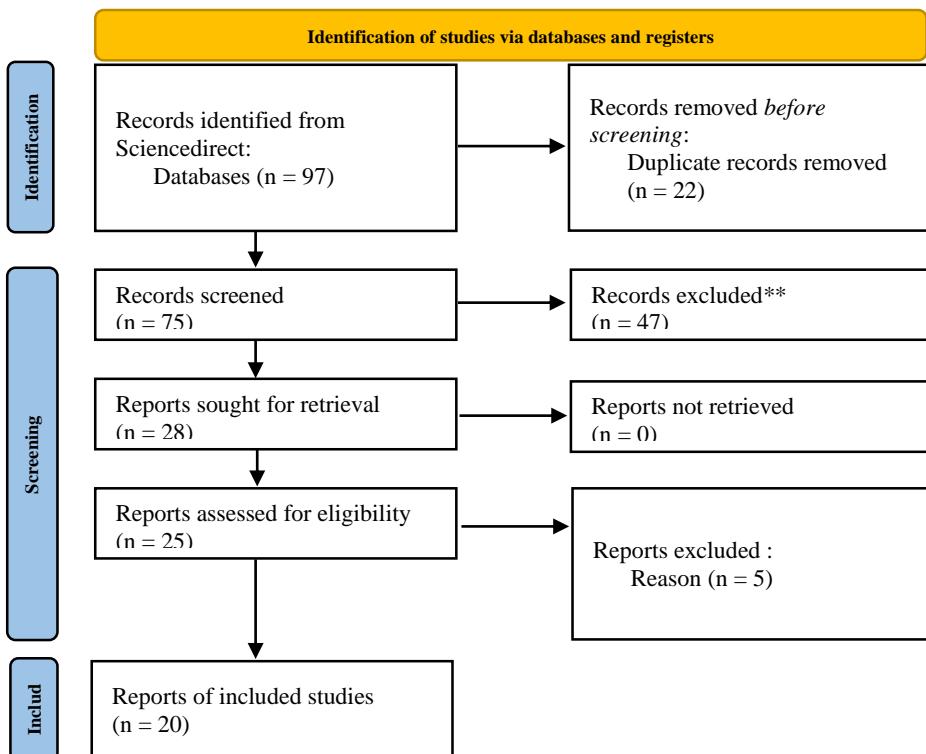
C. RESEARCH METHODOLOGY

This section presents the methodological framework employed in this systematic literature review (SLR) examining the intersection of Artificial Intelligence (AI), Financial Technology (FinTech), and rural entrepreneurship. The review adopted a structured and transparent approach aligned with internationally recognized standards to ensure methodological rigor, replicability, and analytical depth. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines served as the primary reference for documenting the review process (Arnone, 2022; Dawood et al., 2022), while the Critical Appraisal Skills Programme (CASP) checklist was utilized to evaluate the methodological quality of qualitative studies (Long et al., 2020; Hadian et al., 2024).

The CASP-based quality appraisal of the 20 included studies revealed that three qualitative works (Mulyana et al., Tabares et al., and Leong et al.) met all CASP criteria, demonstrating clarity of purpose, appropriate research design, researcher reflexivity, and analytical depth. Most quantitative studies displayed a high level of methodological rigor through the use of robust panel data analysis, empirical modeling, and comprehensive robustness testing. Meanwhile, four mixed-method studies (Gittins & McElwee, Ma et al., Rundel et al., and partially Tanchangya et al.) achieved moderate-to-high credibility, as their qualitative components were not as extensively developed as those in the primary qualitative studies. Collectively, these findings confirm the methodological soundness of

the reviewed literature, ensuring the reliability and validity of the synthesized insights within the scope of AI, FinTech, and rural entrepreneurship research.

The literature search was systematically conducted through the *ScienceDirect* database covering the period from 2020 to 2025. To ensure both precision and inclusivity, a combination of Boolean operators and advanced search strings was applied. The primary keywords used were: “*artificial intelligence*” OR “*AI*” OR “*fintech*” OR “*financial technology*” AND “*rural entrepreneurship*” OR “*rural businesses*” OR “*digital transformation*” AND “*data-driven decisions*.”


A well-defined set of inclusion and exclusion criteria was established to ensure the relevance and quality of the selected studies. The inclusion criteria were as follows:

1. Studies relevant to the fields of AI, FinTech, entrepreneurship, and data-driven
2. Subject areas limited to computer science; business, management, and accounting; economics, econometrics, and finance; decision sciences; and social sciences.
3. Articles published in peer-reviewed journals between 2020 and 2025.

The exclusion criteria included:

1. Papers not available in English.
2. Publications in the form of conference proceedings, systematic literature reviews (SLRs), or bibliometric analyses.

This screening process ensured that only high-quality, evidence-based studies relevant to the objectives of this review were included (Yiğitcanlar et al., 2020; Hao & Demir, 2023).

Figure 2. PRISMA Flow Diagram

D. RESEARCH AND DISCUSSION RESULTS

Theme 1: Digital Infrastructure and Connectivity

Digital infrastructure and connectivity emerge as critical foundations of rural digital transformation, underpinning the integration of Artificial Intelligence (AI) and

Financial Technology (FinTech) within entrepreneurial ecosystems. The reviewed studies consistently reveal that broadband accessibility, ICT infrastructure quality, and digital inclusivity are key determinants of innovation, entrepreneurial activity, and local economic resilience (Joensuu-Salo & Matalamäki, 2023; Kumar et al., 2025). Aligned with the Resource-Based View (RBV), infrastructure acts as a strategic asset that empowers rural enterprises to cultivate unique digital capabilities essential for competitiveness and sustainability.

1. Infrastructure as a Strategic Resource

Empirical evidence underscores the importance of infrastructure as a resource that enables rural enterprises to overcome spatial and market constraints. Biedny, Whitacre, and Van Leuven (2024) found that ultra-fast broadband availability significantly boosts new business creation in rural U.S. regions, though returns plateau beyond a certain speed threshold. This non-linear relationship reflects the necessity of complementary resources such as human and institutional capital consistent with Institutional Theory and the Sustainable Livelihoods Framework (SLF). Likewise, Zhang et al. (2025) demonstrated that digital infrastructure moderates the link between FinTech development and regional innovation in China, emphasizing infrastructure's role as both an enabler and a multiplier of digital ecosystems.

2. Digital Divide and Spatial Equity

The persistent urban–rural digital divide remains a barrier to inclusive growth. Studies in Sub-Saharan Africa and Europe (Salemink, Townsend, & Chapman, 2025) advocate for context-specific policies that promote spatial justice, ensuring equitable access to connectivity. Limited internet access in developing economies constrains rural entrepreneurs from participating in digital markets and finance, reducing productivity and market reach. Nwokolo et al. (2024) and Li (2024) highlight that equitable broadband expansion functions as both a technological and social equalizer, integrating rural communities into the digital economy.

3. ICT Investment and Entrepreneurial Capacity

Investment in ICT infrastructure directly enhances rural business capacity and innovation. Fang and Shen (2025) observed that internal digital connectivity, such as ERP and IoT systems, improves the performance of agricultural enterprises in China, while Morris et al. (2022) found that improved communication infrastructure mitigates rural “brain drain.” These findings align with the Diffusion of Innovation (DOI) model (Willie, 2024), where technological adoption depends on perceived benefits and social compatibility. ICT investments not only expand connectivity but also accelerate the diffusion of digital culture and entrepreneurial learning, fostering long-term community resilience.

4. Policy Interventions and Governance Mechanisms

Government intervention plays a decisive role in translating infrastructure into entrepreneurial growth. Prasetyo and Setyadharma (2022) revealed that targeted broadband subsidies in Indonesia enhanced small-business productivity through access to e-commerce. Similarly, Fu et al. (2023) and Forkun et al. (2021) emphasize that digital literacy and training initiatives are crucial complements to infrastructure investment, enhancing entrepreneurs’ absorptive capacity a core concept within RBV. Sharma et al. (2023) further argue that inclusive digital policies must address structural inequalities, such as gender and regional disparities, to transform infrastructure from a technical asset into a social enabler.

5. Comparative Insights

Comparative research highlights divergent trajectories between developed and developing contexts. Khandelwal et al. (2021) and Reynolds et al. (2021) found that advanced economies leverage mature digital networks to create innovation ecosystems, whereas Bermeo-Córdova et al. (2020) and Liu & Liu (2024) reported persistent infrastructure deficits in developing regions, leading to uneven

entrepreneurial growth. The SLF underscores that infrastructure alone is insufficient; policy coherence, institutional support, and human capital development are equally essential for sustainable transformation.

Across the literature, three integrative insights emerge: (1) RBV Alignment infrastructure acts as a strategic resource whose impact depends on capability-building and absorptive capacity (Zhang et al., 2025; Fang & Shen, 2025); (2) DOI relevance the pace of rural digital adoption is shaped by perceived benefits and institutional facilitation (Salemink et al., 2025); and (3) Institutional Mediation policy coherence and governance determine how infrastructure translates into inclusive participation (Prasetyo & Setyadharma, 2022; Fu et al., 2023). Collectively, these insights reinforce that infrastructure functions as a socio-technical ecosystem its effectiveness contingent upon contextual factors such as governance, skills, and equity.

Table 1. Infrastructure and Connectivity Impacts

Author & Year	Country/Region	Infrastructure Type	Key Findings	Policy Implications
Biedny, Whitacre & Van Leuven (2024)	Southern Plains, USA	Ultra-fast broadband (gigabit)	Availability of gigabit speeds is positively associated with higher rates of new business births, particularly in rural counties.	Prioritize gigabit rollouts in rural areas; align subsidies and permitting to accelerate last-mile deployment and local entrepreneurship support.
Morris, Bowen (2022)	Wales, UK	Fixed broadband connectivity	Rural SMEs still face a connectivity “penalty”; distance from urban centers predicts lower satisfaction and constrains diversification and resilience.	Close persistent rural gaps via targeted investments, performance standards, and resilience-oriented connectivity programs for SMEs.
Rundel, Salemink & Haartsen (2024)	Germany, Sweden, Netherlands	Local online shopping platforms (LOSPs)	LOSPs expand market access for rural firms, supporting sales continuity and local economic resilience; outcomes depend on platform governance and uptake.	Co-fund LOSPs with municipalities; provide onboarding and digital skills; integrate logistics and payments to ensure platform viability.
Fang & Shen (2025)	Rural China	Digital infrastructure for agriculture-related enterprises	Digital economy infrastructure raises enterprise quality by boosting operational leverage and reducing management costs.	Support sector-specific digital infrastructure and shared services for rural agribusiness; link with tax incentives for tech adoption.
Chu, Chen & Yang (2025)	China (31 provinces)	Data infrastructure and integration	Treating data as a production factor and integrating it with traditional inputs significantly improves regional economic performance.	Establish data-sharing standards, public data exchanges, and incentives for compliant data integration at the provincial level.

In summary, Theme 1 demonstrates that digital infrastructure and connectivity are not merely technological enablers but strategic socio-economic catalysts. They serve as the backbone linking AI, FinTech, and rural entrepreneurship, validating the theoretical integration model and laying a foundation for inclusive, resilient, and sustainable rural digital transformation.

Theme 2: FinTech and Financial Inclusion Outcomes

FinTech technologies have redefined access to finance and decision-making within rural entrepreneurship, transforming how individuals and small businesses interact with financial systems. This theme examines the mechanisms through which FinTech enhances financial inclusion and supports data-driven decision-making in rural contexts. As summarized in Table 2, the reviewed literature highlights how innovations such as mobile payments, peer-to-peer (P2P) lending, digital credit scoring, and blockchain financing empower small and medium-sized enterprises (SMEs), rural households, and micro-entrepreneurs by expanding access to finance, improving efficiency, and fostering transparency (Li & Xie, 2025; Wang et al., 2025; Tanchangya et al., 2025; Pal et al., 2025; Huang et al., 2025).

1. Expanding Access through Digital Finance

FinTech platforms have reduced traditional barriers to finance by providing agile, low-cost alternatives to conventional banking. Li and Xie (2025) demonstrate that digital finance alleviates financing constraints and accelerates firms' digital transformation in China, while Wang et al. (2025) find that digital inclusive finance promotes common prosperity when supported by rural revitalization initiatives. These findings reinforce that infrastructure and institutional readiness remain essential preconditions for the success of financial inclusion. The Diffusion of Innovation (DOI) theory explains this process, suggesting that technology adoption depends on perceived utility and compatibility with socio-cultural norms (Willie, 2024). From a Resource-Based View (RBV), digital financial tools act as rare, valuable, and inimitable resources that enhance firm agility and competitiveness (Kumar et al., 2025; Joensuu-Salo & Matalamäki, 2023).

2. Data-Driven Decision-Making and Credit Scoring

A defining contribution of FinTech lies in its ability to utilize big data analytics and machine learning for inclusive credit evaluation and decision-making. Traditional banks rely on collateral-based models that often exclude rural clients without formal credit histories. In contrast, FinTech uses alternative data such as mobile payments, utility bills, and e-commerce transactions to assess creditworthiness (Wu et al., 2022; Yu & Xiang, 2021). This reduces information asymmetry and widens access to formal finance. Tanchangya et al. (2025) show how blockchain-enabled sustainable finance fosters transparency and accountability in natural resource management, aligning with Institutional Theory's emphasis on governance, legitimacy, and ethical oversight (Tamin & Adis, 2020; Hsiao, 2024). Data-driven systems also enhance operational planning, allowing rural enterprises to optimize pricing, inventory, and investment decisions (Benami & Carter, 2021; Zhang et al., 2025).

3. Digital Lending, Mobile Payments, and Blockchain Solutions

Digital lending and mobile payment systems are key enablers of rural entrepreneurship. Farukh (2025) and Vijay (2025) highlight that FinTech-driven microloans empower rural entrepreneurs by providing collateral-free credit, stimulating enterprise creation in agriculture and small trade. Likewise, Upadhyay (2025) and Estiana et al. (2025) find that mobile-based payments reduce transaction costs and expand e-commerce participation, enabling rural producers to engage more actively in digital supply chains. Blockchain solutions further strengthen financial integrity, reduce fraud, and enhance trust, aligning with the Sustainable Livelihoods Framework (SLF) by linking financial inclusion to livelihood security and community stability (Siddiqui & Prakash, 2025).

4. Financial Literacy as a Mediating Factor

While FinTech enhances access, financial literacy determines whether that access translates into empowerment. Studies show that individuals with higher financial literacy make better financial decisions, manage risks effectively, and save more consistently (Ololade, 2024; Mansyur, 2025). Education-based interventions such as

digital finance training increase the use of mobile wallets and online banking, particularly in low-income rural communities (Fauzi et al., 2025; Jhamb, 2025). Chen & Liu (2023) and Willem et al. (2024) further note that literacy initiatives build trust in FinTech systems, helping entrepreneurs transition from informal to formal finance. These findings reinforce DOI's focus on knowledge dissemination and Institutional Theory's call for policy-backed education to ensure equitable participation.

5. Socioeconomic Outcomes and Policy Implications

FinTech adoption produces multidimensional socioeconomic benefits. Xi & Wang (2023) demonstrate a bidirectional link between digital financial inclusion and economic growth across 42 countries, showing that FinTech fosters both enterprise productivity and macroeconomic stability. At a micro-level, Tanchangya et al. (2025) highlight FinTech's role in promoting sustainable finance, where blockchain-based transparency supports environmental and community outcomes. Policy studies (Cambaza, 2023; Setyawati, 2025) advocate for integrated frameworks combining innovation, regulation, and literacy initiatives to balance growth with protection. Regulatory sandboxes and inclusive governance structures can encourage experimentation while safeguarding consumer rights, resonating with Institutional Theory's notion of balanced oversight.

Synthesizing the findings, Theme 2 reveals that FinTech acts both as an enabler and amplifier of financial inclusion. Four theoretical alignments emerge: (1) RBV FinTech represents a strategic, intangible resource that strengthens firm competitiveness and decision-making capability; (2) DOI adoption depends on users' perceptions, literacy, and socio-cultural alignment; (3) Institutional Theory governance and regulation mediate equitable outcomes; and (4) SLF financial inclusion enhances livelihood resilience and sustainability. Collectively, these perspectives affirm that FinTech's transformative potential is maximized when technological, institutional, and human dimensions evolve cohesively.

Table 2. FinTech and Financial Inclusion Outcomes

Author & Year	FinTech Mechanism	Target Group	Findings	Socioeconomic Effects
Wang, Tan & Zuo (2025)	Digital inclusive finance platforms	Rural households and regions	Digital finance promotes common prosperity, inequality; moderated by rural place-based digital revitalization levels.	Reduces regional supports
Huang, Dong & Li (2025)	FinTech-enabled credit and innovation finance	Cities with different resource endowments	FinTech drives technological innovation and regional growth; tailor effects vary by local resources.	Accelerates innovation-led growth; tailor regulation to local resources.
Li & Xie (2025)	Digital finance alleviating financing constraints	Chinese A-share firms	Digital finance eases productivity constraints and accelerates industrial digital transformation.	Enhances productivity; complements industrial upgrading policies.
Pal, Vankila & Fernandes (2025)	Traditional vs. digital financial inclusion	Emerging economies	Traditional inclusion correlates positively with infrastructure growth; digital inclusion protection, literacy, and has mixed effects without interoperability to ensure enabling conditions.	Combine digital with growth; digital inclusion protection, literacy, and has mixed effects without interoperability to ensure enabling conditions.
Tanchangya et al. (2025)	Crowdfunding/alt-finance for sustainability	Small-scale natural resource managers, Venezuela	FinTech unlocks financing for community-scale sustainability projects.	Promotes environmental stewardship and livelihood security; requires regulatory sandboxes and monitoring.

In summary, Theme 2 confirms that fintech-driven inclusion extends beyond access to finance it reconfigures how rural entrepreneurs make decisions, manage risk,

and engage with the digital economy. Its impact depends on the synergy between technology, education, and governance, forming a socio-technical ecosystem where equitable innovation drives sustainable rural transformation.

Theme 3: AI-Driven Decision Tools in Rural Entrepreneurship

Artificial Intelligence (AI) and data-driven technologies have emerged as transformative forces shaping the future of rural entrepreneurship. By enhancing predictive, analytical, and adaptive decision-making, AI empowers entrepreneurs to respond to uncertainty, improve efficiency, and sustain competitiveness. This theme synthesizes current empirical and conceptual studies (see Table 3) to explain how AI facilitates data utilization, strengthens operational decision-making, and promotes sustainable business practices while acknowledging the contextual challenges of its implementation in rural settings.

1. Predictive Analytics and Operational Intelligence

AI-driven predictive analytics is central to improving efficiency and accuracy in rural enterprise decision-making. Studies indicate that AI tools are widely employed to forecast market demand, optimize production cycles, and manage resources effectively (Mishra et al., 2024). In agriculture, predictive models process data on weather, soil, and crop yields to identify optimal planting times and irrigation schedules (Sharma et al., 2023; Meng, 2024). Such systems improve resource utilization, mitigate risk, and increase profitability. Similarly, Gittins and McElwee (2024) show that adaptive algorithms enable rural farmers to diversify income sources based on market trends and climate data, thus strengthening business resilience. These findings align with the *Resource-Based View* (RBV), where the ability to transform data into actionable insight serves as a strategic capability for sustained competitive advantage (Joensuu-Salo & Matalamäki, 2023).

Beyond agriculture, AI strengthens business intelligence through real-time analytics that support agile responses to shifting market dynamics. Data collected from e-commerce, social media, and FinTech platforms enables entrepreneurs to tailor marketing and product strategies (Ali et al., 2023). Through this process, AI enhances entrepreneurial agility, allowing rural enterprises to overcome information asymmetry and act strategically amid uncertainty.

2. Machine Learning, Automation, and Decision Support

Machine learning and automation are pivotal for operational transformation in rural enterprises. Rao & Gao (2022) demonstrate that AI-based decision indices, such as EWM and TOPSIS, support evidence-based policymaking and resource allocation in rural economic development. Likewise, Scuotto et al. (2025) reveal that data-driven growth hacking techniques such as A/B testing and analytics stacks foster scalability and performance among startups and SMEs. In production and logistics, AI automates repetitive tasks, reduces errors, and predicts inventory needs (Perez et al., 2025). Predictive models allow businesses to anticipate material shortages and demand fluctuations, optimizing supply chains while minimizing waste (Olaniyi et al., 2023). These patterns correspond with the *Diffusion of Innovation* (DOI) theory (Willie, 2024), which emphasizes perceived benefits and compatibility as drivers of technological adoption.

3. Institutional and Ethical Challenges

Despite clear advantages, AI adoption in rural entrepreneurship is limited by infrastructural, institutional, and ethical constraints. In developing regions, poor internet access and unreliable electricity impede the use of computationally intensive AI systems (Ribeiro et al., 2024; Abrokwa-Larbi & Awuku-Larbi, 2023). Moreover, limited digital literacy restricts entrepreneurs' capacity to interpret AI-generated data effectively (Setyawati, 2025; Pelekamoyo & Libati, 2023). Institutional Theory (Tamin & Adis, 2020) explains how these barriers arise from weak governance

structures and insufficient policy frameworks. Ethical challenges such as algorithmic bias, data privacy, and accountability also persist (Perez et al., 2025; Araújo et al., 2021). The absence of localized AI ethics frameworks risks marginalizing vulnerable rural populations. Scholars advocate for context-sensitive governance and transparency mechanisms to ensure equitable AI deployment (Ofodile et al., 2024).

4. AI for Sustainable Livelihoods

AI contributes not only to productivity but also to the sustainability of rural livelihoods. It enhances resilience by enabling income diversification, efficiency gains, and environmentally conscious decision-making (Gittins & McElwee, 2024). Technologies such as precision agriculture and predictive environmental monitoring align with the *Sustainable Livelihoods Framework* (SLF), improving resource efficiency and ecological balance (Fang & Shen, 2025). Furthermore, when integrated with FinTech and e-commerce platforms, AI amplifies digital inclusion. Leong et al. (2025) show that platform-based analytics empower micro-entrepreneurs to co-create value and expand market participation, illustrating the convergence of technological and financial ecosystems in supporting rural innovation.

The synthesis of findings in Table 3 underscores AI's role as a decision-enabling and capability-enhancing tool. However, its transformative potential depends on infrastructure quality, governance frameworks, and human capital development. Theoretically, this aligns with the integrated model combining RBV, DOI, and Institutional Theory, nested within sustainability objectives under SLF. Policymakers must therefore prioritize digital infrastructure expansion, promote AI literacy, and establish ethical oversight mechanisms to guide responsible AI deployment. For entrepreneurs, adopting AI entails building partnerships with technology providers, investing in data management, and pursuing incremental innovation that matches institutional realities.

In essence, AI-driven decision tools redefine rural entrepreneurship as data-informed, adaptive, and sustainability-oriented. Yet, realizing this promise requires collective efforts across technological, institutional, and human dimensions to ensure that AI evolves as a catalyst for inclusive and equitable rural transformation.

Table 3. AI-Driven Decision Tools in Rural Entrepreneurship

Author & Year	AI Application	Business Context	Decision Impact	Limitations
Ji, Jiao & Cheng (2023)	Data-driven evaluation models (ML-assisted composite indices)	Regional development and higher education integration	Improves policy targeting and investment prioritization for high-quality regional growth.	Data bias and limited transferability across regions.
Chu, Chen & Yang (2025)	Data-factor integration analytics	Firm- and provincial-level digital transformation	Guides resource allocation by valuing data assets and optimizing input integration.	Data governance and privacy issues; uneven data maturity.
Fang & Shen (2025)	Analytics for operational leverage and cost reduction	Agriculture-related rural enterprises	Enables cost-efficient scaling and evidence-based management.	Requires reliable data infrastructure and digital literacy.
Ma, Rahut, Sonobe &	Market-access and pricing analytics	Smallholder farmers using e-commerce	Enhances channel selection,	Platform dependency and logistical

Theme 4: Governance, Human Capital, and Sustainable Transformation

Governance, human capital, and sustainability together form a triadic foundation for understanding the enablers of digital transformation in rural entrepreneurship. The synthesis of recent studies (see Table 4) indicates that institutional frameworks, human capital development, and sustainability-oriented governance collectively determine the pace, inclusivity, and long-term impact of digital adoption. Drawing upon the Resource-Based View (RBV), Institutional Theory, and the Sustainable Livelihoods Framework (SLF), this theme highlights how internal capabilities, institutional pressures, and socio-environmental imperatives interact to shape digital transformation outcomes in rural contexts.

1. Governance Models and Institutional Readiness

Institutional readiness and governance quality emerge as decisive factors facilitating or hindering rural digital transformation. Effective governance structures support innovation through coordination, accountability, and inclusivity (Longenecker et al., 2021; Halabavi, 2024). Mulyana, Rusu, and Perjons (2024) illustrate how ambidextrous governance models balancing exploration and control enable organizations such as rural-focused banks to pursue digital transformation without compromising operational stability. This balance reflects RBV principles, where governance flexibility transforms institutional assets into dynamic capabilities that sustain competitiveness. Conversely, fragmented or bureaucratic systems impede innovation diffusion, particularly in rural economies (Tiony, 2024). Institutional Theory explains that organizations adapt to digital technologies when governance frameworks provide legitimacy and stability. Participatory governance models, as demonstrated by Rundel, Salemink, and Haartsen (2024), empower local communities to co-design digital agendas, fostering trust and place-based innovation ecosystems. Cross-country comparisons reveal the importance of policy coherence. Xu et al. (2025) found that national regulatory alignment particularly in green finance policies supports inclusive innovation and strengthens institutional legitimacy. Well-designed governance frameworks reduce uncertainty, enhance collaboration, and signal government commitment to sustainable innovation. This aligns with Institutional Theory's assertion that coercive and normative pressures accelerate legitimacy-driven adoption of new practices.

2. Human Capital and Capacity Building

Human capital is the operational backbone of digital transformation. Studies consistently show that digital literacy, targeted training, and talent development enhance the adoption and effective use of AI and FinTech tools in rural enterprises (Akther, 2023; Lenis et al., 2024). Mulyana et al. (2024) emphasize that governance integrated with upskilling programs such as cross-functional teams and risk management training enables organizations to adapt to evolving digital ecosystems. From the RBV perspective, knowledge, digital competencies, and adaptive skills represent strategic resources that drive organizational resilience.

Bhatt (2024) and Marshall et al. (2023) stress the role of mentorship and collaborative partnerships between technology providers and rural enterprises in facilitating tacit knowledge transfer and enhancing absorptive capacity. Similarly, Rundel et al. (2024) demonstrate that community-based training promotes inclusivity and shared learning, echoing SLF's focus on knowledge as human and social capital. Participatory training not only improves technological proficiency but also supports locally adapted innovations that address rural realities.

Nevertheless, significant disparities persist across countries. Mahmoud and Labib (2025) highlight that developing economies face limited access to education and

funding, leading to uneven digital readiness. Su et al. (2023) argue that such inequality results from weak institutional support, where literacy initiatives fail to reach marginalized groups. Integrating education and digital policy is therefore essential to ensure that capacity-building efforts are inclusive and sustainable.

3. Sustainability Integration in Governance Frameworks

Integrating sustainability principles into governance models is essential for aligning digital transformation with social and environmental objectives. Saha et al. (2025) and Panwar & Sahoo (2025) emphasize that sustainable governance frameworks contribute not only to technological advancement but also to achieving the United Nations Sustainable Development Goals (SDGs). Hybrid governance models, such as those in Tabares, Dionisio, and Parida (2025), illustrate how corporations combine commercial and social missions through Corporate Social Innovation (CSI), creating measurable social and environmental impact. This approach reflects Institutional Theory's view that legitimacy and ethical accountability are prerequisites for sustainable digital transformation.

Similarly, Xu et al. (2025) demonstrate how green finance policies incentivize innovation and energy efficiency, directly linking governance to inclusive growth. Sengupta et al. (2023) show that sustainability reporting and disclosure mechanisms in banking improve transparency and guide capital toward responsible investments. However, variations in reporting standards across regions underscore the need for harmonization to maintain accountability and comparability. The SLF reinforces that governance reform should integrate ecological and social resilience, emphasizing community engagement and long-term sustainability.

Comparative studies highlight stark differences in governance capacity and human capital readiness between developed and developing economies. Developed countries benefit from mature institutional structures, robust training systems, and harmonized sustainability regulations (Sebhau & Enquist, 2022). In contrast, developing nations struggle with fragmented governance, limited funding, and inconsistent monitoring mechanisms. Institutional maturity thus shapes the trajectory of digital transformation.

To bridge these gaps, policymakers must design multi-stakeholder governance systems integrating public, private, and community actors. Embedding sustainability metrics into national digital strategies ensures that economic growth aligns with long-term environmental and social goals. Likewise, investments in education and governance reforms should prioritize inclusivity, transparency, and adaptive learning, enabling digital ecosystems to evolve responsibly. Ultimately, the convergence of governance, human capital, and sustainability defines the transformative capacity of rural digital economies.

Table 4. Governance and Human Capital for Digital Transformation

Author & Year	Governance Model	Human Capital Strategy	Sustainability Dimension	Outcomes
Mulyana, Rusu & Perjons (2024)	Ambidextrous IT governance balancing innovation and control	Upskilling for digital delivery with risk and compliance capabilities	Institutional and operational sustainability of digital transformation	More agile yet compliant transformation in banking; replicable mechanisms for large incumbents.
Sengupta et al. (2023)	SDG-oriented disclosure and oversight in banking	Sustainability reporting capabilities and cross-functional teams	Environmental and social sustainability	Framework to benchmark banks' SDG focus; informs public policy and investor scrutiny.

Xu et al. (2025)	Green finance policy as governance instrument	Innovation talent and public awareness for green tech	Inclusive green growth	Empirical evidence that green finance lifts green growth and inclusivity via innovation channels.
Tabares, Dionisio & Parida (2025)	Corporate social innovation in hybrid B Corps	Mission-driven talent development and community engagement	Social sustainability and local impact	Strategic CSI enables transformative social outcomes while maintaining commercial viability.
Gittins & McElwee (2024)	Crisis-responsive farm governance and diversification	Entrepreneurial capabilities among upland farmers	Economic resilience and continuity	Diversification and entrepreneurship improve crisis adaptability of rural businesses.

Discussion

This systematic review provides an integrated understanding of how Artificial Intelligence (AI), Financial Technology (FinTech), and digital transformation collectively drive rural entrepreneurship and inclusion. Synthesizing insights from the four themes infrastructure and connectivity, FinTech for financial inclusion, AI-driven decision systems, and governance with human capital the discussion highlights the dynamic interplay between technological innovation, institutional structures, and sustainable development. The analysis draws upon the Resource-Based View (RBV), Diffusion of Innovation (DOI), Institutional Theory, and the Sustainable Livelihoods Framework (SLF) to explain how technological and institutional capabilities converge to shape inclusive rural transformation.

1. Integration of Technological and Institutional Dimensions

Digital infrastructure and governance emerge as foundational enablers of rural digitalization. The RBV and DOI frameworks collectively demonstrate that access to technological resources and innovation diffusion depends on institutional coordination and legitimacy (Morris et al., 2022; Longenecker et al., 2021). Effective governance facilitates connectivity, investment, and collaboration between public and private actors, while weak governance results in fragmented policies and limited diffusion (Su et al., 2023). The institutional lens thus reinforces the need for adaptive, transparent, and participatory governance to support sustainable digital ecosystems (Sebhatu & Enquist, 2022).

2. FinTech and AI as Catalysts for Inclusion and Productivity

FinTech serves as a democratizing force in rural finance, offering mobile payments, digital credit, and blockchain-based lending systems that reduce costs and broaden access (Ozili & Mhlanga, 2023; Danladi et al., 2023). However, its success relies on financial and digital literacy (Ololade, 2024; Mansyur, 2025). Similarly, AI-driven decision systems enhance predictive analytics, automation, and data-driven insight, improving operational efficiency and market forecasting (Sharma et al., 2023; Meng, 2024). Within the RBV, AI represents a dynamic capability enabling entrepreneurs to anticipate market shifts and optimize resource allocation. Yet, barriers such as skill shortages, weak data infrastructure, and ethical concerns especially regarding algorithmic bias and privacy limit adoption (Ofodile et al., 2024).

3. Human Capital, Governance, and Sustainable Development

Human capital development underpins successful digital transformation. Education, vocational training, and financial literacy initiatives empower rural entrepreneurs to effectively use digital tools (Akther, 2023; Lenis et al., 2024). Institutional Theory and SLF together illustrate how governance, human capital, and sustainability form an interdependent triad. Strong institutional frameworks ensure that digitalization aligns with broader development goals, including the SDGs (Panwar & Sahoo, 2025; Saha et al., 2025). Conversely, fragmented governance and unequal access to training perpetuate regional disparities (Mahmoud & Labib, 2025).

Collectively, the evidence demonstrates that rural digital transformation is not merely technological but deeply socio-institutional. Its success depends on aligning infrastructure, innovation, and human capability through coherent governance. Policymakers must pair digital investments with capacity-building and ethical oversight, while businesses and communities collaborate to ensure equitable participation. The integration of RBV, DOI, Institutional Theory, and SLF provides a holistic framework for future research and policy design. Ultimately, inclusive digital ecosystems require balancing innovation with equity, ensuring that AI and FinTech become catalysts for sustainable rural development rather than new sources of exclusion.

E. CONCLUSION

This systematic literature review explored how Artificial Intelligence (AI) and Financial Technology (FinTech) are driving digital transformation in rural entrepreneurship by synthesizing evidence from diverse empirical and conceptual studies published between 2020 and 2025. Drawing upon the Resource-Based View (RBV), Diffusion of Innovation (DOI) Theory, Institutional Theory, and the Sustainable Livelihoods Framework (SLF), the review elucidates how digital infrastructure, FinTech inclusion, AI-driven decision-making, and governance mechanisms collectively enable sustainable entrepreneurial ecosystems in rural regions.

The findings reveal that robust digital infrastructure and broadband connectivity serve as foundational enablers of rural digital inclusion, while FinTech platforms democratize financial access and enhance decision-making capacity among rural entrepreneurs. AI applications, particularly in predictive analytics and automation, significantly strengthen data-driven operational efficiency, reducing uncertainty in production, marketing, and resource management. Moreover, effective governance frameworks and human capital development play pivotal roles in ensuring that digital transformation aligns with sustainability objectives, addressing institutional readiness and social equity across contexts.

This review identifies several research gaps and practical implications. Future research should investigate longitudinal impacts of AI and FinTech adoption on rural resilience, explore ethical and cultural dimensions in algorithmic decision-making, and analyze cross-regional policy effectiveness in reducing the digital divide. Theoretically, the study contributes by integrating multi-level perspectives across resource, institutional, and social sustainability dimensions, offering a holistic framework for understanding digital entrepreneurship in rural economies. Practically, it emphasizes the importance of inclusive digital governance, capacity-building initiatives, and adaptive policy interventions to ensure equitable access to the benefits of digital transformation.

REFERENCE

Abrokwah-Larbi, K. and Awuku-Larbi, Y. (2023). The impact of marketing modification on the performance of food processing smes in ghana. *Journal of Research in Marketing and Entrepreneurship*, 26(1), 163-190. <https://doi.org/10.1108/jrme-01-2022-0010>

Akther, F. (2023). Role of skill india programs in fostering entrepreneurship among rural youth in india. *Formosa Journal of Science and Technology*, 2(10), 2891-2902. <https://doi.org/10.55927/fjst.v2i10.6678>

Alabdali, S. A., Pileggi, S. F., & Çetindamar, D. (2023). Influential factors, enablers, and barriers to adopting smart technology in rural regions: a literature review. *Sustainability*, 15(10), 7908. <https://doi.org/10.3390/su15107908>

Ali, R., Hussain, A., Nazir, S., Khan, S., & Khan, H. U. (2023). Intelligent decision support systems—an analysis of machine learning and multicriteria decision-making methods. *Applied Sciences*, 13(22), 12426. <https://doi.org/10.3390/app132212426>

Araújo, S. O., Peres, R. S., Barata, J., Lidon, F. C., & Ramalho, J. C. (2021). Characterising the agriculture 4.0 landscape—emerging trends, challenges and opportunities. *Agronomy*, 11(4), 667. <https://doi.org/10.3390/agronomy11040667>

Arnone, G. (2022). Blockchain and cryptocurrency innovation for a sustainable financial system. *International Journal of Industrial Management*, 15(1), 1-16. <https://doi.org/10.15282/ijim.15.1.2022.8994>

Benami, E. and Carter, M. (2021). Can digital technologies reshape rural microfinance? implications for savings, credit, & insurance. *Applied Economic Perspectives and Policy*, 43(4), 1196-1220. <https://doi.org/10.1002/aapp.13151>

Bermeo-Córdova, B., Blanco, J., Satama, M., & Jara, C. (2020). Identification of variables that cause agricultural graduates not to return to the rural sector in ecuador. application of fuzzy cognitive maps. *Sustainability*, 12(10), 4270. <https://doi.org/10.3390/su12104270>

Bhatt, A. (2024). Development of ai-driven healthcare systems in rural india. *Asian Journal of Computing and Engineering Technology*, 5(1), 21-30. <https://doi.org/10.47604/ajcet.2808>

Biedny, C., Whitacre, B. E., & Van Leuven, A. J. (2024). Do Gigabits Mean Business?“Ultra-Fast” broadband availability's effect on business births. *Information Economics and Policy*, 68, 101094. <https://doi.org/10.1016/j.infoecopol.2024.101094>

Setyawati, Bunga, M. M., Restuniati, S., & Adelia, C. (2025). Fintech payment transformation in msme business finance. *Proceedings of Economics Business Innovation & Creativity*, 2(1), 361-370. <https://doi.org/10.32493/ebic.v2i1.51038>

Cambaza, E. (2023). The role of fintech in sustainable healthcare development in sub-saharan africa: a narrative review. *FinTech*, 2(3), 444-460. <https://doi.org/10.3390/fintech2030025>

Chu, Z., Chen, X., & Yang, J. (2025). Impact of data factor and data integration on economic development: Empirical insights from China. *Telecommunications Policy*, 103004. <https://doi.org/10.1016/j.telpol.2025.103004>

Chen, B. and Liu, Y. (2023). Exploration of mechanisms and paths of fintech enabling high-quality development of rural finance. *Journal of Global Humanities and Social Sciences*, 4(05), 242-246. <https://doi.org/10.61360/bonighss232015010505>

Chen, S., Liang, M., & Yang, W. (2022). Does digital financial inclusion reduce china's rural household vulnerability to poverty: an empirical analysis from the perspective of household entrepreneurship. *Sage Open*, 12(2). <https://doi.org/10.1177/21582440221102423>

Cheng, Y. and Zheng, D. (2023). Does the digital economy promote coordinated urban–rural development? evidence from china. *Sustainability*, 15(6), 5460. <https://doi.org/10.3390/su15065460>

Criveanu, M. M. (2023). Investigating digital intensity and e-commerce as drivers for sustainability and economic growth in the eu countries. *Electronics*, 12(10), 2318. <https://doi.org/10.3390/electronics12102318>

Danladi, S., Prasad, M., Modibbo, U., Ahmadi, S., & Ghasemi, P. (2023). Attaining sustainable development goals through financial inclusion: exploring collaborative approaches to fintech adoption in developing economies. *Sustainability*, 15(17), 13039. <https://doi.org/10.3390/su151713039>

Dawood, H., Zadjali, F. A., Rawahi, M. A., Karim, S., & Mohamed, H. (2022). Business trends & challenges in islamic fintech: a systematic literature review. *F1000Research*, 11, 329. <https://doi.org/10.12688/f1000research.109400.1>

Farukh, Dr.Mohd Umar, Dr. Shaheen Parveen, Akhilesh Kumar, Professor Nawab Ali Khan, & Hina Siddiqui (2025). Analyzing the role of fintech innovations in advancing agricultural entrepreneurship in india. *Lex Localis - Journal of Local Self-Government*, 23(S4), 4160-4176. <https://doi.org/10.52152/801184>

Estiana, D., Rayhan, K. K., & Althaf, N. (2025). The impact of fintech adoption on digital economic growth in indonesia. *Seriat Ekonomisi*, 2(3), 116-122. <https://doi.org/10.35335/4yrqkz85>

Fahmi, F. Z. and Savira, M. (2021). Digitalization and rural entrepreneurial attitude in indonesia: a capability approach. *Journal of Enterprising Communities: People and Places in the Global Economy*, 17(2), 454-478. <https://doi.org/10.1108/jec-06-2021-0082>

Fanelli, R. M. (2021). Barriers to adopting new technologies within rural small and medium enterprises (smes). *Social Sciences*, 10(11), 430. <https://doi.org/10.3390/socsci10110430>

Fang, L., & Shen, Y. (2025). Digital economy enabling high-quality development of agricultural enterprises: Interaction, inner mechanism and strategic orientation. *International Review of Economics & Finance*, 103, 104393. <https://doi.org/10.1016/j.iref.2025.104393>

Fauzi, M. R., Handayati, P., & Siswanto, E. (2025). The role of fintech in sme financing: a bibliometric review. *International Journal of Economics, Commerce, and Management*, 2(2), 339-346. <https://doi.org/10.62951/ijecm.v2i2.632>

Forkun, I., Prystemskyi, O., Chernenko, O., Chkan, I., & Yakusheva, I. (2021). Institutionalization of state support and development of sectoral entrepreneurship of rural areas. *Public Policy and Administration*, 20(3), 454-463. <https://doi.org/10.5755/j01.ppa.20.3.28405>

Fu, L., Zeng, Y., & Kang, X. (2023). Bridging the urban–rural gap: a qualitative examination of perceived access, barriers, risks and opportunities of children's digital learning during the covid-19 pandemic. *Child & Family Social Work*, 29(1), 1-11. <https://doi.org/10.1111/cfs.13045>

Gittins, P., & McElwee, G. (2024). Farm adaptive business strategies in crisis management: COVID-19. *Journal of Rural Studies*, 111, 103393. <https://doi.org/10.1016/j.jrurstud.2024.103393>

Green, J., & Senge, P. (2011). Diffusion of Innovations Theory. . <https://doi.org/10.4135/9781412952545.n120>

Hadian, M., Jelodar, Z. K., Khanbebin, M. J., Atafimanesh, P., Asiabar, A. S., & Dehagani, S. M. H. (2024). Challenges of implementing telemedicine technology: a systematized review. *International Journal of Preventive Medicine*, 15. https://doi.org/10.4103/ijpvm.ijpvm_48_23

Halabkhani, B. M. (2024). Ai-driven predictive analytics in healthcare: improving patient outcomes and resource allocation. *African Journal of Biomedical Research*, 9288-9297. <https://doi.org/10.53555/ajbr.v27i4s.5427>

Hao, X. and Demir, E. (2023). Artificial intelligence in supply chain decision-making: an environmental, social, and governance triggering and technological inhibiting protocol. *Journal of Modelling in Management*, 19(2), 605-629. <https://doi.org/10.1108/jm2-01-2023-0009>

Hsiao, M. (2024). Resource integration and firm performance through organizational capabilities for digital transformation. *Digital Transformation and Society*. <https://doi.org/10.1108/dts-07-2023-0050>

Huang, X., Dong, J., & Li, X. (2025). Fintech, technological innovation and regional economic growth: Theoretical modeling and empirical evidence. *China Economic Review*, 91, 102397. <https://doi.org/10.1016/j.chieco.2025.102397>

Jhamb, A. (2025). Fintech adoption and financial inclusion in rural india. *Journal of Neonatal Surgery*, 14(32S), 3054-3062. <https://doi.org/10.63682/jns.v14i32s.7884>

Ji, M., Jiao, Y., & Cheng, N. (2023). An Innovative decision-making scheme for the high-quality economy development driven by higher education. *Journal of Innovation & Knowledge*, 8(2), 100345. <https://doi.org/10.1016/j.jik.2023.100345>

Ji, X., Wang, K., Xu, H., & Li, M. (2021). Has digital financial inclusion narrowed the urban-rural income gap: the role of entrepreneurship in china. *Sustainability*, 13(15), 8292. <https://doi.org/10.3390/su13158292>

Joensuu-Salo, S. and Matalamäki, M. (2023). The impact of digital capability on firm performance and growth in incumbent smes. *Journal of Enterprising Culture*, 31(02), 211-232. <https://doi.org/10.1142/s0218495823500073>

Junping, Y., Wu, R., & Yang, H. (2023). Digital transformation and enterprise sustainability: the moderating role of regional virtual agglomeration. *Sustainability*, 15(9), 7597. <https://doi.org/10.3390/su15097597>

Khandelwal, R., Kolte, A., & Rossi, M. (2021). A study on entrepreneurial opportunities in digital health-care post-covid-19 from the perspective of developing countries. *Foresight*, 24(3/4), 527-544. <https://doi.org/10.1108/fs-02-2021-0043>

Kumar, A., Murthy, V., & Tiwari, A. A. (2025). Digital entrepreneurship: foundations, trends, and future directions. *Global Business and Organizational Excellence*, 44(6), 69-92. <https://doi.org/10.1002/joe.22300>

Lenis, Y. Y., Montgomery, A. J., Carrillo-González, D. F., Palacio, E. V. G., Barrios, D., & Elmetwally, M. A. (2024). Agricultural literacy in artificial insemination and agribusiness management for social innovation in rural populations affected by armed conflict in colombia. *Frontiers in Sustainable Food Systems*, 7. <https://doi.org/10.3389/fsufs.2023.1254261>

Leong, C., Hua, W., Xiao, X., Yu, J., & Zhou, Y. (2025). Value co-creation in a digital ecosystem: Exploring autonomous co-creation in a digital influencer ecosystem. *Information & Management*, 104251. <https://doi.org/10.1016/j.im.2025.104251>

Li, S., & Xie, N. (2025). The impact of digital finance on firms' digital Transformation: Mechanism analysis based on enterprise financing. *International Review of Economics & Finance*, 104223. <https://doi.org/10.1016/j.iref.2025.104223>

Li, Y. (2024). How does the development of rural broadband in china affect agricultural total factor productivity? evidence from agriculture-related loans. *Frontiers in Sustainable Food Systems*, 8. <https://doi.org/10.3389/fsufs.2024.1332494>

Liu, M. and Liu, H. (2024). The influence and mechanism of digital village construction on the urban-rural income gap under the goal of common prosperity. *Agriculture*, 14(5), 775. <https://doi.org/10.3390/agriculture14050775>

Long, H., French, D., & Brooks, J. (2020). Optimising the value of the critical appraisal skills programme (casp) tool for quality appraisal in qualitative evidence synthesis. *Research Methods in Medicine & Health Sciences*, 1(1), 31-42. <https://doi.org/10.1177/2632084320947559>

Longenecker, R., Hawes, E. M., & Page, C. P. (2021). Cultivating healthy governance in rural programs. *Journal of Graduate Medical Education*, 13(2), 174-176. <https://doi.org/10.4300/jgme-d-20-00825.1>

Ma, W., Sonobe, T., & Gong, B. (2024). Linking farmers to markets: Barriers, solutions, and policy options. *Economic Analysis and Policy*, 82, 1102-1112. <https://doi.org/10.1016/j.eap.2024.05.005>

Mahmoud, S. S. and Labib, G. M. (2025). Digital transformation and the sdgs: a case study on egypt's e-government and sdg-16. *Governance and Politics*, 3(4), 8-20. <https://doi.org/10.24833/2782-7062-2024-3-4-8-20>

Mansyur, K. K. (2025). The impact of fintech on financial inclusion and regional economic growth. *Journal of Economic Growth and Development Review*, 17-26. <https://doi.org/10.62012/jegar.v2i1.15>

Marshall, A., Wilson, C., & Dale, A. (2023). New pathways to crisis resilience: solutions for improved digital connectivity and capability in rural australia. *Media International Australia*, 189(1), 24-42. <https://doi.org/10.1177/1329878x231183292>

Meng, Z. (2024). The role of ai in transforming local economies: exploring how ai technologies are impacting local businesses and labor markets. *Applied and Computational Engineering*, 108(1), 1-6. <https://doi.org/10.54254/2755-2721/108/20251d0053>

Mishra, A., Das, J., & Awtar, R. (2024). An Emerging Era Of Research In Agriculture Using AI. *Journal of Scientific Research and Technology*. <https://doi.org/10.61808/jsrt93>

Monda, A., Feola, R., Parente, R., Vesci, M., & Botti, A. (2023). Rural development and digital technologies: a collaborative framework for policy-making. *Transforming Government: People, Process and Policy*, 17(3), 328-343. <https://doi.org/10.1108/tg-12-2022-0162>

Morris, J., Morris, D., & Bowen, R. (2022). Implications of the digital divide on rural sme resilience. *Journal of Rural Studies*, 89, 369-377. <https://doi.org/10.1016/j.jrurstud.2022.01.005>

Mulyana, R., Rusu, L., & Perjons, E. (2024). Key ambidextrous IT governance mechanisms for successful digital transformation: A case study of Bank Rakyat Indonesia (BRI). *Digital Business*, 4, 100083. <https://doi.org/10.1016/j.digbus.2024.100083>

Mwogosi, A. (2025). Leveraging ai to enhance healthcare delivery in tanzania: innovations and ethical imperatives. *SAGE Open*, 15(3). <https://doi.org/10.1177/21582440251378162>

Nwokolo, S., Eyime, E., Obiwulu, A., & Ogbulezie, J. (2024). Africa's path to sustainability: harnessing technology, policy, and collaboration. *Trends in Renewable Energy*, 10(1), 98-131. <https://doi.org/10.17737/tre.2024.10.1.00166>

Ofodile, O. C., Oyewole, A. T., Ugochukwu, C. E., Addy, W. A., Adeoye, O. B., & Okoye, C. C. (2024). Predictive analytics in climate finance: assessing risks and opportunities for investors. *GSC Advanced Research and Reviews*, 18(2), 423-433. <https://doi.org/10.30574/gscarr.2024.18.2.0076>

Okoye, C. C., Nwankwo, E. E., Usman, F. O., Mhlongo, N. Z., Odeyemi, O., & Ike, C. U. (2024). Accelerating sme growth in the african context: harnessing fintech, ai, and cybersecurity for economic prosperity. *International Journal of Science and Research Archive*, 11(1), 2477-2486. <https://doi.org/10.30574/ijjsra.2024.11.1.0231>

Olaniyi, F. G., Olaniyi, O. O., Adigwe, C. S., Abalaka, A. I., & Shah, N. H. (2023). Harnessing predictive analytics for strategic foresight: a comprehensive review of techniques and applications in transforming raw data to actionable insights. *Asian Journal of Economics, Business and Accounting*, 23(22), 441-459. <https://doi.org/10.9734/ajeba/2023/v23i221164>

Ololade, Y. J. (2024). Sme financing through fintech: an analytical study of trends in nigeria and the usa. *International Journal of Management & Entrepreneurship Research*, 6(4), 1078-1102. <https://doi.org/10.51594/ijmer.v6i4.1001>

Ozili, P. and Mhlonga, D. (2023). Why is financial inclusion so popular? an analysis of development buzzwords. *Journal of International Development*, 36(1), 231-253. <https://doi.org/10.1002/jid.3812>

Pal, S., Vankila, S., & Fernandes, M. N. (2025). Interplay of financial inclusion and economic growth in emerging economies. *World Development Sustainability*, 6, 100201. <https://doi.org/10.1016/j.wds.2025.100201>

Panwar, A. and Sahoo, S. K. (2025). Transforming rural agriculture through technology: an empirical study on the socio-economic and sustainable impacts of digital platforms.

International Journal for Multidisciplinary Research, 7(3). <https://doi.org/10.36948/ijfmr.2025.v07i03.47805>

Pelekamoyo, J. K. and Libati, H. M. (2023). Considerations of an efficiency-intelligent geo-localised mobile application for personalised sme market predictions. Measurement and Control, 56(9-10), 1788-1797. <https://doi.org/10.1177/00202940231186675>

Perez, K., Wisniewski, D., Ari, A., Lee, K., Lieneck, C., & Ramamonjiarivelo, Z. (2025). Investigation into application of ai and telemedicine in rural communities: a systematic literature review. Healthcare, 13(3), 324. <https://doi.org/10.3390/healthcare13030324>

Prasetyo, P. and Setyadharma, A. (2022). Digitalization technology for sustainable rural entrepreneurship and inequality. Journal of Human Resource and Sustainability Studies, 10(03), 464-484. <https://doi.org/10.4236/jhrss.2022.103028>

Rao, C., & Gao, Y. (2022). Evaluation Mechanism Design for the Development Level of Urban-Rural Integration Based on an Improved TOPSIS Method. *Mathematics*. <https://doi.org/10.3390/math10030380>

Reynolds, L., Henderson, D., Xu, C., & Norris, L. (2021). Digitalisation and the foundational economy: a digital opportunity or a digital divide for less-developed regions?. Local Economy the Journal of the Local Economy Policy Unit, 36(6), 451-467. <https://doi.org/10.1177/02690942211072239>

Ribeiro, J. C. P., Mileski, M., Seixas, J. L., Carvalho, L. F., & Mantovani, R. G. (2024). Image classification for precision agriculture: a coffee study case. Anais Do Computer on the Beach, 15, 088-095. <https://doi.org/10.14210/cotb.v15.p088-095>

Rundel, C., Salemink, K., & Haartsen, T. (2024). The potential of local online shopping platforms for villages and small towns. Journal of Rural Studies, 109, 120–132. <https://doi.org/10.1016/j.jurstud.2024.03.015>

Saha, A., Raut, R. D., Kumar, M., & Ghoshal, S. (2025). To explore the relationship between sustainability, digital technology, and sustainable development goals. Business Strategy & Development, 8(1). <https://doi.org/10.1002/bsd2.70076>

Salemink, K., Townsend, L., & Chapman, P. (2025). The remapping of rural digitalisation: A just-rural narrative review. Journal of Rural Sociology, 90(2), 245–265. <https://doi.org/10.1111/jors.12345>

Scuotto, V., Tzanidis, T., Murray, A., & Manlio, D. G. (2025). Growth hacking: Leveraging hyper-scalability, hyper-specialization, and human-centric strategies for competitive advantage. Journal of Business Research, 190, 115217. <https://doi.org/10.1016/j.jbusres.2025.115217>

Sebhatu, S. P. and Enquist, B. (2022). Values and multi-stakeholder dialog for business transformation in light of the un sustainable development goals. Journal of Business Ethics, 180(4), 1059-1074. <https://doi.org/10.1007/s10551-022-05195-x>

Sengupta, U., Pramanik, H. S., Datta, S., Dutta, S., Dasgupta, S., & Kirtania, M. (2023). Assessing sustainability focus across global banks. Development Engineering, 8, 100114. <https://doi.org/10.1016/j.deveng.2023.100114>

Shamim, T. and Ahmad, N. (2025). Mapping the intellectual landscape of digital financial inclusion, msmes and entrepreneurship in india. SEDME (Small Enterprises Development, Management & Extension Journal): A Worldwide Window on MSME Studies, 52(3), 314-330. <https://doi.org/10.1177/09708464251363283>

Sharma, P., Dadheech, P., Aneja, N., & Aneja, S. (2023). Predicting agriculture yields based on machine learning using regression and deep learning. IEEE Access, 11, 111255-111264. <https://doi.org/10.1109/access.2023.3321861>

Sharma, S. K., Ilavarasan, P. V., & Karanasios, S. (2023). Small businesses and fintech: a systematic review and future directions. Electronic Commerce Research, 24(1), 535-575. <https://doi.org/10.1007/s10660-023-09705-5>

Siddiqui, S. and Prakash, O. (2025). Bytes in the city, bits in the village: a comparative study of fintech reach and relevance. International Journal for Multidisciplinary Research, 7(5). <https://doi.org/10.36948/ijfmr.2025.v07i05.55546>

Singh, B., Srivastava, A. P., Chatterjee, S., Ďurana, P., & Kliešťik, T. (2024). Assessing digital capability for twin transition and profitability: from firm and people perspectives with leadership support as moderator. *Business Ethics, the Environment & Responsibility*, 34(4), 1121-1140. <https://doi.org/10.1111/beer.12698>

Su, X., Wang, S., & Li, F. (2023). The impact of digital transformation on esg performance based on the mediating effect of dynamic capabilities. *Sustainability*, 15(18), 13506. <https://doi.org/10.3390/su151813506>

Tabares, A., Pineda, A. A. L., Cano, J. A., & Montoya, R. A. G. (2022). Rural entrepreneurship: an analysis of current and emerging issues from the sustainable livelihood framework. *Economies*, 10(6), 142. <https://doi.org/10.3390/economies10060142>

Tabares, S., Dionisio, M., & Parida, V. (2025). Leveraging corporate social innovation by hybrid organizations: A strategic perspective from B Corps in Latin America. *Journal of Business Research*, 186, 114945. <https://doi.org/10.1016/j.jbusres.2024.114945>

Tamin, M. and Adis, A. A. (2020). The impact of firm's capabilities on digital brand performance of sme's online business. *Malaysian Journal of Business and Economics (MJB)*, (2). <https://doi.org/10.51200/mjbe.v0i0.2133>

Tanchangya, T., Tafsirun, U., Islam, M. S., Islam, N., Chakma, J., & Esquivias, M. A. (2025). Role of financial technology in small-scale natural Resource management through sustainable financing in Venezuela. *Social Sciences & Humanities Open*, 11, 101636. <https://doi.org/10.1016/j.ssaho.2025.101636>

Tiony, O. K. (2024). Financial technology and its role in promoting financial inclusion and economic growth in kenya. *American Journal of Industrial and Business Management*, 14(07), 943-968. <https://doi.org/10.4236/ajibm.2024.147049>

Upadhyay, A. (2025). Digital finance revolution in fintech industry. *International Journal of Scientific Research in Engineering and Management*, 09(06), 1-9. <https://doi.org/10.55041/ijserem51027>

Verma, A. (2024). The impact of digital marketing adoption on firm performance: a case study of small and medium enterprises in india. *International Journal of Strategic Marketing Practice*, 6(1), 1-11. <https://doi.org/10.47604/ijjsmp.2453>

Vijay, L. and Karthigeyan, D. A. (2025). Sustainable fintech: catalysing green financial inclusion in emerging economies in india. *Journal of Development Economics and Management Research Studies*, 12(26), 76-89. <https://doi.org/10.53422/jdms/2025.122608>

Wang, T., Zhang, Q., & Li, M. (2025). Digital inclusive finance and common prosperity: Evidence from Chinese provinces. *International Review of Economics & Finance*, 96, 102245. <https://doi.org/10.1016/j.iref.2025.102245>

Willem, W., Dinan, D., & Elliyana, E. (2024). The impact of digital economy on msme growth in rural areas: a qualitative study on e-commerce and fintech. *Journal of Production, Operations Management and Economics*, (46), 88-100. <https://doi.org/10.55529/jpome.46.88.100>

Willie, M. M. (2024). Leveraging digital resources: a resource-based view perspective. *Golden Ratio of Human Resource Management*, 5(1), 01-14. <https://doi.org/10.52970/grhrm.v5i1.415>

Wu, G. and Peng, Q. (2024). Bridging the digital divide: unraveling the determinants of fintech adoption in rural communities. *Sage Open*, 14(1). <https://doi.org/10.1177/21582440241227770>

Wu, X., Yap, C., & Ho, P. (2022). Use of digital finance platforms for personal finance management in rural china. *Journal of Electronic Commerce in Organizations*, 20(1), 1-22. <https://doi.org/10.4018/jeco.296256>

Xi, W., & Wang, Y. (2023). Digital financial inclusion and quality of economic growth. *Heliyon*, 9. <https://doi.org/10.1016/j.heliyon.2023.e19731>.

Xu, A., Dai, Y., Hu, Z., & Qiu, K. (2025). Can green finance policy promote inclusive green growth? Based on the quasi-natural experiment of China's green finance reform and innovation pilot zone. *International Review of Financial Analysis*, 99, 103982. <https://doi.org/10.1016/j.irfa.2025.103982>

Xu, F., Yi, S., Zhou, Y., & Yu, D. (2024). The impact of fintech development on the entrepreneurial behavior of farmers: evidence from the china household finance survey. *Scientific Reports*, 14(1). <https://doi.org/10.1038/s41598-024-68737-5>

Xu, F., Zhang, Y., & Sagarra, M. (2025). The impact of digital finance on firms' digital transformation. *International Review of Economics & Finance*, 89, 34–49. <https://doi.org/10.1016/j.iref.2025.03.010>

Yiğitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (ai) in building smarter cities: insights from a systematic review of the literature. *Energies*, 13(6), 1473. <https://doi.org/10.3390/en13061473>

Yu, G. and Xiang, H. (2021). Rural e-commerce development and farmers' digital credit behavior: evidence from china family panel studies. *Plos One*, 16(10), e0258162. <https://doi.org/10.1371/journal.pone.0258162>

Zahra, S. A. (2021). The resource-based view, resourcefulness, and resource management in startup firms: a proposed research agenda. *Journal of Management*, 47(7), 1841-1860. <https://doi.org/10.1177/01492063211018505>

Zhang, L., Huang, M., & Tang, S. (2025). Impact of data factor and data integration on economic digitalization. *Telecommunications Policy*, 49(3), 102561. <https://doi.org/10.1016/j.telpol.2025.102561>

Zhang, X., Sun, Y., Gao, Y., & Dong, Y. (2022). Paths out of poverty: social entrepreneurship and sustainable development. *Frontiers in Psychology*, 13. <https://doi.org/10.3389/fpsyg.2022.1062669>.